期刊专题

10.3778/j.issn.1002-8331.2108-0341

基于pu-learning的同行评议文本情感分析

引用
最近几年逐渐出现了对同行评议文本情感分析的研究,包括通过同行评议文本预测审稿人的推荐状态的任务.现有模型融入了论文本身或摘要信息,采用神经网络学习论文或摘要的高层表示,结合同行评议文本预测审稿人的推荐状态,这使得模型变得非常复杂的同时结果却没有实质性的提高.为此,提出了OSA机制来提高情感分析模型中对观点句的关注度.具体来说,采用pu-learning从同行评议文本的前N个句子中学习观点句的特征,使每一个句子都得到一个观点句权重,将其应用于情感分析模型的倒数第二层,由此得到最终的预测结果.在ICLR 2017—2018数据集上使用不同的情感分析模型对OSA进行了评估,实验结果验证了OSA的高效性,并在两个数据集上取得了优异的性能.

同行评议、情感分析、pu-learning、数据挖掘

59

TP391.4(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;大连理工大学研究生教学改革基金项目

2023-02-20(万方平台首次上网日期,不代表论文的发表时间)

共7页

143-149

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

59

2023,59(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn