期刊专题

10.3778/j.issn.1002-8331.2205-0451

改进YOLOv5的隧道火灾帧差检测网络与应用方法

引用
隧道发生火灾存在着检测难、救援难的问题,实时的火灾监测对于及时发现火情是至关重要的.传统基于视频图像的火灾检测方法,检测依赖单幅图像,无法提取多幅图像的时空信息,检测精度低,不能有效检测隧道火灾.因此,提出了隧道火灾帧差网络.帧差网络使用3D卷积核构建网络结构,提取视频中火灾的时间上下文信息;将帧差网络衔接至YOLOv5主干网络形成隧道火灾帧差检测网络,可以检测单幅图像及两幅图像,从而充分利用视频动态信息;使用CIoU函数优化网络的边界框损失,并融合分类损失与置信度损失,使网络能够快速收敛.实验结果表明,该网络在隧道火灾数据集上的平均精度高达91.03%,检测速度达到了63.7帧/s,具有较强的鲁棒性.通过选取最优分析策略设计隧道火灾检测应用方法,该方法在隧道场景中的漏检率和误检率分别为2.52%和2.03%,可以满足隧道火灾检测的准确性和实时性需求.

隧道、火灾检测、帧差网络、YOLOv5

59

TP391(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;中央高校基本科研业务费专项;中央高校基本科研业务费专项

2023-02-09(万方平台首次上网日期,不代表论文的发表时间)

共10页

222-231

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

59

2023,59(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn