期刊专题

10.3778/j.issn.1002-8331.2108-0344

基于多任务学习的多罪名案件信息联合抽取

引用
面向法律文本的实体关系联合抽取技术对于案情关键信息的智能提取至关重要,是智慧司法领域应用中的重要环节.目前的联合抽取方法虽然已经在特定罪名案件的数据集上取得了较好的效果,但是由于模型在训练时只关注了特定罪名类型文本数据的特点,使得模型的泛化能力有限,在应用到多罪名案件的情况下常常使得模型的效果下降.因此引入多任务学习的方法对多罪名情形下的实体关系联合抽取进行了研究,以涉毒类案件和盗窃类案件两大类罪名的文书数据为基础,构建了一个罪名分类任务作为联合抽取的辅助任务,通过基于特征筛选的动态加权多任务模型同时对两个任务进行学习,在单任务模型的基础上整体F1值提升了2.4个百分点,在涉毒类案件和盗窃类案件上的F1值分别提升了1.6和3.2个百分点.

实体关系联合抽取、多任务学习、智慧司法

59

TP391(计算技术、计算机技术)

国家重点研发计划2018YFC0830603

2023-02-09(万方平台首次上网日期,不代表论文的发表时间)

共7页

178-184

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

59

2023,59(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn