期刊专题

10.3778/j.issn.1002-8331.2105-0421

融合多因素的短时交通流预测研究

引用
交通流预测一直是交通领域的研究热点,针对现有交通流预测研究大多为常态下的预测,而未考虑天气、节假日等外部因素的影响,提出了一种融合多因素的短时交通流预测模型.通过长短时记忆网络(long short-term memory,LSTM)捕捉时间序列的长期依赖关系,引入注意力机制,利用注意力机制自适应地选择相应的驱动序列,实现短时交通流的预测.实验分别与传统模型、未引入注意力机制的CLA-ATTN模型及未融合多因素的CLA-MFACTOR模型进行对比分析,结果证明所提出的CLA模型具有较高的预测准确度,是一种较好的预测方法.

多因素、短时交通流预测、长短时记忆网络(LSTM)、注意力机制

58

TP399(计算技术、计算机技术)

国家自然科学基金;教育部人文社会科学研究项目;甘肃省自然科学基金;甘肃省自然科学基金

2022-11-14(万方平台首次上网日期,不代表论文的发表时间)

共8页

309-316

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(21)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn