期刊专题

10.3778/j.issn.1002-8331.2102-0172

语义及句法特征多注意力交互的医疗自动问答

引用
针对中文医疗自动问答任务,为了捕捉问答句中重要的句法信息和语义信息,提出引入图卷积神经网络捕捉句法信息,并添加多注意力池化模块实现问答句的语序特征和句法特征联合学习的方法.在B E RT模型学习问答句的高阶语义特征基础上,利用双向门控循环单元描述句子的全局语义特征,以及引入图卷积神经网络编码句子的语法结构信息,以与双向门控循环单元所获取的序列特征呈现互补关系;通过多注意力池化模块对问答对的不同语义空间上的编码向量进行两两交互,并着重突出问答对的共现特征;通过衡量问答对的匹配分数,找出最佳答案.实验结果表明,在cMedQA v1.0和cMedQA v2.0数据集上,相比于主流的深度学习方法,所提方法的ACC@1有所提高.实验证明引入图卷积神经网络和多注意力池化模块的集成算法能有效提升自动问答模型的性能.

自动问答、双向门循环单元、图卷积神经网络、句法信息、多注意力池化

58

TP391(计算技术、计算机技术)

京津冀协同创新项目17YEXTZC00020

2022-09-23(万方平台首次上网日期,不代表论文的发表时间)

共8页

233-240

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(18)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn