期刊专题

10.3778/j.issn.1002-8331.2203-0037

鲁棒最小二乘孪生支持向量机及其稀疏算法

引用
最小二乘孪生支持向量机通过求解两个线性规划问题来代替求解复杂的二次规划问题,具有计算简单和训练速度快的优势.然而,最小二乘孪生支持向量机得到的超平面易受异常点影响且解缺乏稀疏性.针对这一问题,基于截断最小二乘损失提出了一种鲁棒最小二乘孪生支持向量机模型,并从理论上验证了模型对异常点具有鲁棒性.为使模型可处理大规模数据,基于表示定理和不完全Cholesky分解得到了新模型的稀疏解,并提出了适合处理带异常点的大规模数据的稀疏鲁棒最小二乘孪生支持向量机算法.数值实验表明,新算法比已有算法分类准确率、稀疏性、收敛速度分别提高了1.97%~37.7%、26~199倍和6.6~2027.4倍.

鲁棒最小二乘孪生支持向量机、截断最小二乘损失函数、不完全Cholesky分解、表示定理、稀疏解

58

TP181(自动化基础理论)

国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;河南省博士后基金;河南省自然科学基金

2022-09-23(万方平台首次上网日期,不代表论文的发表时间)

共12页

78-89

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(18)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn