期刊专题

10.3778/j.issn.1002-8331.2102-0169

自适应对抗学习求解旅行商问题

引用
深度学习为组合优化问题提供了新的解决思路,目前该研究方向多关注于对模型和训练方法的改良,更多的论文引入自然语言处理方向的新模型来加以改进求解效果,而缺乏从实例的数据生成方向来关注模型的泛化能力和鲁棒性.为解决该问题,借鉴对抗学习的思想,针对经典组合优化问题——旅行商问题,从数据生成方向切入研究,设计生成器网络,使用监督学习的方式来产生对抗样本,并将对抗样本加入到随机样本中混合训练,以改善模型对该类问题的泛化性能.同时,依据强化学习训练过程中判别器模型的更新方式提出一种自适应机制,来训练对抗模型,最终得到能够在随机分布样本上和对抗样本上都取得较好结果的模型.仿真验证了所提出方法的有效性.

对抗训练、强化学习、模型泛化、旅行商问题

58

TP181(自动化基础理论)

国家自然科学基金;福建省自然科学基金项目

2022-09-15(万方平台首次上网日期,不代表论文的发表时间)

共6页

224-229

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(17)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn