期刊专题

10.3778/j.issn.1002-8331.2101-0089

基于知识蒸馏的YOLOv3算法研究

引用
知识蒸馏作为一种模型压缩方法,将大网络(教师网络)学到的知识传递给小网络(学生网络),使小网络获得接近大网络的精度.知识蒸馏在图像分类任务上获得不错的效果,但在目标检测上的研究较少,且有待提高.当前目标检测中主要基于特征提取层进行知识蒸馏,该类方法存在两个问题,第一,没有对教师网络传递知识的重要程度进行度量,第二,仅对特征提取层进行蒸馏,教师网络的知识未充分传递给学生网络.针对第一个问题,通过引入信息图作为蒸馏的监督信号,强化了学生网络对教师网络重点知识的学习;针对第二个问题,对特征提取层和特征融合层的输出同时进行蒸馏,使学生网络更充分地学习教师网络传递的知识.实验结果表明,以YOLOv3为检测模型,在不改变学生网络结构的基础上,平均类别精度(mAP)提升9.3个百分点.

知识蒸馏、模型压缩、目标检测、YOLOv3

58

TP391(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金

2022-09-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

174-180

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(17)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn