期刊专题

10.3778/j.issn.1002-8331.2203-0195

神经网络非梯度优化方法研究进展

引用
神经网络优化是机器学习领域的一个基础性前沿课题.相较于神经网络的纯梯度优化算法,非梯度算法在解决收敛速度慢、易陷入局部最优、无法解决不可微等问题上表现出更大的优势.在剖析基于梯度的神经网络方法优缺点的基础上,重点对部分非梯度优化方法进行了综述,包括前馈神经网络优化和随机搜索优化;从基本理论、训练神经网络的步骤以及收敛性等方面对非梯度优化方法的优缺点和应用情况进行了分析;总结了基于非梯度的训练神经网络的算法在理论和应用方面面临的挑战并且展望了未来的发展方向.

深度学习、神经网络、训练算法、优化理论、非梯度优化算法

58

TP181(自动化基础理论)

国家自然科学基金61806221

2022-09-15(万方平台首次上网日期,不代表论文的发表时间)

共16页

34-49

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(17)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn