期刊专题

10.3778/j.issn.1002-8331.2111-0457

改进ShuffleNet V2的轻量级农作物病害识别方法

引用
针对目前有关深度学习的农作物病害识别方法中存在模型较为复杂,部署在计算资源有限的边缘设备和移动终端上适应性不强,实时准确识别作物病害较差的问题,提出一种改进ShuffleNet V2的轻量级农作物病害识别方法.以ShuffleNet V2单元为基础,引入ECA(efficient channel attention)注意力模块,使用H-Swish激活函数以便减少网络结构每个Stage模块中ShuffleNet V2单元使用个数,使用轻量化网络设计组件深度可分离卷积.在PlantVillage病害数据集上进行实验.结果表明,模型的参数量约为2.95×105,计算量为3.388×107(FLOPs)和6.674×107(MAdd),病害识别平均准确率达到了99.24%,为农作物病害识别方法在移动终端等资源受限设备上部署应用提供参考.

农作物病害识别、ShuffleNet V2、轻量级、ECA注意力模块

58

TP391.4(计算技术、计算机技术)

国家自然科学基金61873068

2022-06-28(万方平台首次上网日期,不代表论文的发表时间)

共9页

260-268

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn