期刊专题

10.3778/j.issn.1002-8331.2101-0009

基于多尺度感受野融合的小目标检测算法

引用
针对通用目标检测算法在检测小目标时检测精度低的问题,提出一种基于多尺度感受野融合的小目标检测算法S-RetinaNet.该算法采用残差神经网络(residual neural network,ResNet)提取出图像的特征,利用递归特征金字塔网络(recursive feature pyramid network,RFPN)对特征进行融合,通过多尺度感受野融合模块(multiscale receptive field fusion,MRFF)分别处理RFPN的三个输出,提升对小目标的检测能力.实验表明,相比改进前的RetinaNet算法,S-RetinaNet算法在PASCAL VOC数据集上的均值平均精度(mean average precision,mAP)和MS COCO数据集上的平均精度(average precision,AP)分别提高了2.3和1.6个百分点,其中小目标检测精度(average precision small,APS)更为显著,提升了2.7个百分点.

神经网络、小目标检测、感受野、特征金字塔

58

TP391.41(计算技术、计算机技术)

国家十三五核能开发科研项目;四川省教育厅资助科研项目;四川省科技厅技术成果转化示范项目

2022-06-28(万方平台首次上网日期,不代表论文的发表时间)

共6页

177-182

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn