期刊专题

10.3778/j.issn.1002-8331.2106-0305

基于CEEMDAN分解的短时交通流组合预测

引用
短时交通流预测是实现交通流诱导与控制的重要保障,鉴于交通流的随机性和复杂性,提出基于自适应噪声完全集合经验模态分解(CEEMDAN)的短时交通流组合预测模型.利用CEEMDAN算法对非线性序列具有自适应分解的特性,将交通流时间序列通过CEEMDAN分解为频率不同、复杂度不同的多个时间序列分量;利用PE算法分析各个分量的随机特性,根据时间序列分量的不同随机特性分为高频序列分量、中频序列分量和低频序列分量,根据高频、中频和低频序列分量的随机特性分别建立GWO-BP模型、GWO-LSSVM模型和ARIMA模型进行预测;叠加高频、中频和低频各个分量的预测结果,得到短时交通流最终预测值.仿真分析结果表明,与其他预测模型相比,基于CEEMDAN分解的短时交通流组合预测模型提升了预测精度.

短时交通流、组合预测、排列熵、经验模态分解

58

TP393(计算技术、计算机技术)

上海市科技创新行动计划软科学研究领域重点项目18692105100

2022-06-20(万方平台首次上网日期,不代表论文的发表时间)

共8页

279-286

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn