期刊专题

10.3778/j.issn.1002-8331.2111-0281

人群计数研究综述

引用
人群计数广泛应用在公共安防、视频监控和智慧城市建设等领域,对控制特定场所人数、指挥公共交通、防止疫情蔓延、保障社会稳定具有重要积极意义.传统的计数方法精度不高、场景受限,随着深度学习的发展,传统方法逐渐被卷积神经网络(convolutional neural network,CNN)方法代替.介绍了人群计数的研究背景、现状和发展趋势,叙述了两种传统方法;从计数精度、网络结构、评价指标和数据集等方面重点分析了CNN方法,发现CNN技术可以有效解决多尺度和跨场景等问题;阐述了基于Vision Transformer(ViT)序列的弱监督计数方法并且对比各类方法.对未来人群计数的研究前景做出展望.

人群计数、卷积神经网络、Vision Transformer(ViT)序列、密度估计

58

TP3-05(计算技术、计算机技术)

国家自然科学基金;广西自然科学基金项目;广西研究生教育创新计划项目;广西民族大学相思湖青年学者创新团队

2022-06-20(万方平台首次上网日期,不代表论文的发表时间)

共14页

33-46

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn