期刊专题

10.3778/j.issn.1002-8331.2012-0457

应用BWP指标的差分隐私保护k-means算法

引用
差分隐私是一种基于噪声扰动的隐私保护技术,针对差分隐私保护下噪声导致的聚类中心点偏移较大的问题,提出了一种基于BWP(between-within proportion)指标的差分隐私k-means算法.算法将聚类有效性评价指标BWP引入到隐私预算分配过程中,对传统隐私预算分配进行加权处理,在一次迭代中为不同密度分布的簇分配不同的隐私预算,从而添加不同的随机噪声.理论分析表明新算法满足ε-差分隐私保护.基于四个标准数据集对新算法进行了实验,实验结果表明,在聚类结果的可用性以及算法的稳定性上新算法具有优势.

聚类、k-means算法、BWP指标、差分隐私、隐私预算分配

58

TP309(计算技术、计算机技术)

陕西省重点研发计划2019GY-028

2022-05-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

108-115

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn