期刊专题

10.3778/j.issn.1002-8331.2106-0063

融合振荡禁忌搜索的自适应均衡优化算法

引用
为了改善均衡优化(equilibrium optimizer,EO)算法寻优过程中存在的收敛速度慢、易受局部极小值影响的问题,提出一种融合振荡禁忌搜索的自适应均衡优化算法CfOEO.针对EO算法初始化随机性过高导致的收敛速度慢的问题,引入精英反向学习初始化种群,增加算法搜索能力;通过自适应调整收敛因子来平衡算法的局部和全局搜索能力;在禁忌搜索策略中引入振荡算子,提高算法跳出局部极小值的能力.仿真实验采用10个基准测试函数和部分CEC2014测试函数以及基准测试函数的Wilcoxon秩和检测,对CfOEO算法进行寻优性能测试,测试结果验证了CfOEO算法的鲁棒性.

均衡优化算法、精英反向学习、振荡算子、禁忌搜索、自适应收敛因子

58

TP301.6(计算技术、计算机技术)

贵州省科技计划项目;贵州省科技计划项目;贵州省科技计划项目;贵州省公共大数据重点实验室开放课题;贵州大学培育项目

2022-05-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

68-75

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn