期刊专题

10.3778/j.issn.1002-8331.2011-0359

重加权在多类别不平衡医学图像检测中的应用

引用
在医学图像检测中,由于数据集经常存在每类样本数目不均衡的情况,使数据集样本出现长尾分布的问题,严重影检测模型的性能.针对网络在训练多类别不均衡数据集中训练时出现的过拟合现象,采用重加权的方式改进原有损失函数,并用CLAHE算法对X光图像进行预处理,以突出图像的内部细节,选用ResNext50网络作为特征提取网络.以covid-chestxray数据集作为实验用数据集,通过实验评估了模型的准确度、精确率、召回率和F1值,证实了该方法的有效性.

类别不平衡、医学图像、胸部X光图像、重加权

58

TP391.41(计算技术、计算机技术)

国家自然科学基金62072118

2022-04-27(万方平台首次上网日期,不代表论文的发表时间)

共6页

237-242

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn