10.3778/j.issn.1002-8331.2108-0104
MDT-CNN-LSTM模型的股价预测研究
股价预测一直是投资者在股票市场中关注的焦点.近年来,深度学习技术在这一领域得到广泛应用.在融合卷积神经网络(CNN)和长短时记忆网络(LSTM),构建CNN-LSTM模型的基础上,引入多向延迟嵌入的张量处理技术MDT(mutiway-delay-embedding),对每日股票因子向量进行因子重构,生成汉克尔矩阵,按时间并排生成汉克尔张量,作为CNN-LSTM模型的输入.利用CNN的卷积与池化对包含因子相关性信息的输入数据提取特征,再将输出的特征矩阵输入到LSTM模型进行关联预测,从而构建了MDT-CNN-LSTM混合模型.选取涉及22个行业的48家公司及12个股票因子进行股价预测,通过从预测精度和时效性两个方面对比实验,显示提出的方法表现优于其他模型,最后选取四类股票指数进行预测,模型效果依旧处于较优水准,验证了引入MDT技术的有效性和可行性.
股票价格预测;多向延迟嵌入(MDT);卷积神经网络(CNN);长短时记忆网络(LSTM)
58
TP29(自动化技术及设备)
2022-03-18(万方平台首次上网日期,不代表论文的发表时间)
共7页
280-286