期刊专题

10.3778/j.issn.1002-8331.2009-0061

语义导向多尺度多视图深度估计算法

引用
目前利用深度学习进行多视图深度估计的方法可以根据卷积类型可以大致分为两类.其中,基于2D卷积网络的模型预测计算速度快,但预测精度较低;基于3D卷积网络的模型预测精度高,却存在高硬件消耗.同时,多视图中相机外部参数的变化使得模型无法在物体边缘、遮挡或纹理较弱区域生成高精度预测结果.针对上述问题,提出了基于3D卷积的语义导向多尺度多视图深度估计算法,在保证预测精度的同时降低硬件消耗.同时针对遮挡、纹理较弱等区域,利用网络自身提取的图片特征作为先验导向信息,增强网络对全局信息的感知,结合多尺度融合方法增强网络的鲁棒性.在公开数据集的测试对比中,提出的方法预测深度图结果更加清晰,并能有效地应对图片中物体边界、遮挡等区域.

多视图立体匹配;深度估计;深度神经网络;监督学习

58

TP391(计算技术、计算机技术)

北京市自然科学基金;北京市自然科学基金

2022-02-16(万方平台首次上网日期,不代表论文的发表时间)

共10页

215-224

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn