期刊专题

10.3778/j.issn.1002-8331.2102-0223

融合BERT和自编码网络的短文本聚类研究

引用
短文本相比于长文本词汇的数量更少,提取其中的语义特征信息更加困难,利用传统的向量空间模型VSM(vector space model)向量化表示,容易得到高维稀疏的向量.词的稀疏表示缺少语义相关性,造成语义鸿沟,从而导致下游聚类任务中,准确率低下,容易受噪声干扰等问题.提出一种新的聚类模型BERT_AE_K-Means,利用预训练模型BERT(bidirectional encoder representations from transformers)作为文本表示的初始化方法,利用自动编码器AutoEncoder对文本表示向量进行自训练以提取高阶特征,将得到的特征提取器Encoder和聚类模型K-Means进行联合训练,同时优化特征提取模块和聚类模块,提高聚类模型的准确度和鲁棒性.所提出的模型在四个数据集上与Word2Vec_K-Means和STC2等6个模型相比,准确率和标准互信息都有所提高,在SearchSnippet数据集上的准确率达到82.28%,实验结果显示,所提方法有效地提高了短文本聚类的准确度.

短文本聚类;自动编码器;自然语言处理;BERT

58

TP391(计算技术、计算机技术)

上海市信息安全综合管理技术重点实验室开放项目;松江区科学技术研究项目

2022-02-16(万方平台首次上网日期,不代表论文的发表时间)

共8页

145-152

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn