期刊专题

10.3778/j.issn.1002-8331.2007-0507

面向样本不平衡的网络安全态势要素获取

引用
针对传统的网络安全态势要素获取模型中,当样本分布不平衡时,占比很少的样本(统称小样本)不能被有效检测,准确识别到每一类攻击样本成为研究热点之一.利用深度学习提出了一种面向样本不平衡的要素获取模型,利用卷积神经网络作为基分类器提取网络数据的深层特征,其次使用GAN生成对抗网络扩充小样本的方法,解决样本分布不均衡问题.在扩充后的平衡数据集上采用迁移学习,加快基分类器到适应于小样本的新分类的训练时间.在NSL-KDD数据集上的实验表明,经过生成对抗网络扩充后的数据集,结合迁移学习有效加快了模型训练收敛速度,并有效提高网络安全态势要素获取的分类精度.

态势要素;样本特征;卷积神经网络;迁移学习;生成对抗网络

58

TP393.08(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;重庆市教委自然科学基金

2022-01-14(万方平台首次上网日期,不代表论文的发表时间)

共9页

134-142

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn