期刊专题

10.3778/j.issn.1002-8331.2107-0359

重叠实体关系抽取综述

引用
实体关系抽取能够从文本中提取事实知识,是自然语言处理领域中重要的任务.传统关系抽取更加关注于单实体对的关系,但是句子内包含不止一对实体且实体间存在重叠现象,因此重叠实体关系抽取任务具有重大研究价值.任务发展至今,总体可以分为基于序列到序列、基于图和基于预训练语言模型三种方式.基于序列到序列的方式主要以标注策略和复制机制的方法为主,基于图的方式主要以静态图和动态图的方法为主,基于预训练语言模型的方式主要以B E RT挖掘潜在语义特征的方法为主.回顾该任务的发展历程,讨论分析每种模型的优势及不足点;结合目前研究的最近动态,对未来的研究方向进行展望.

重叠实体关系抽取;深度学习;图神经网络;预训练语言模型

58

TP391(计算技术、计算机技术)

国家重点研发计划;国家自然科学基金

2022-01-14(万方平台首次上网日期,不代表论文的发表时间)

共11页

1-11

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

58

2022,58(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn