期刊专题

10.3778/j.issn.1002-8331.2105-0178

基于HP-LSTM模型的股指价格预测方法

引用
股指价格时间序列受到长期和短期不同因素的影响,且具有非平稳、非线性等特点,传统计量模型的预测精度较低.为提高预测精度,一些研究将人工神经网络模型用于金融时间序列预测,取得了比传统计量模型更好的效果.提出了一种融合了HP滤波(Hodrick-Prescott Filter)和LSTM神经网络模型的股指价格预测模型,模型使用HP滤波将股指价格时间序列分解为长期趋势和短期波动,利用LSTM神经网络模型分别学习长期趋势和短期波动序列的特征,并分别进行长期趋势和短期波动预测,将预测结果融合得出股指价格预测结果.实验结果表明,提出的HP-LSTM混合模型不仅可以有效捕捉到股指价格时间序列的长期趋势和短期波动的变化规律,提高了股指价格预测精度,并且长期趋势和短期波动都具有相应的经济含义,提高了模型的可解释性.

股指价格;人工神经网络;长短期人工神经网络(LSTM);HP滤波器;预测

57

TP391(计算技术、计算机技术)

国家社会科学基金;河南省高等学校哲学社会科学基础研究重大项目;河南大学哲学社会科学重大项目培育计划

2021-12-22(万方平台首次上网日期,不代表论文的发表时间)

共9页

296-304

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(24)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn