期刊专题

10.3778/j.issn.1002-8331.2012-0080

基于正弦因子和量子局部搜索的灰狼优化算法

引用
针对基本灰狼优化算法在求解复杂问题时,存在依赖初始种群、过早收敛和易陷入局部最优等缺点,提出一种融合正弦控制因子和量子局部搜索的灰狼优化算法(QGWO).通过对灰狼算法中的控制因子按照具有正弦变化的曲线变化,使改进后的算法在迭代前期加快收敛速度以快速完成全局搜索,并且在迭代后期减缓收敛速度以提高算法精度.引入量子局部搜索降低算法陷入局部最优的概率.选用12个标准测试函数对QGWO算法性能进行验证,分别从单峰、多峰和固定维测试函数对比分析.实验结果表明,与GWO、WOA、SCA和CGWO相比,QGWO对测试函数的求解有更高的精度和稳定性.通过工程实例优化KELM进行分类实验验证,QGWO表现出更好的寻优性能.

改进灰狼优化算法;正弦因子;量子局部搜索;测试函数

57

TP301.6(计算技术、计算机技术)

广西自然科学基金;广西重点研发计划

2021-12-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

83-89

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(24)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn