期刊专题

10.3778/j.issn.1002-8331.2007-0373

基于机器学习的浏览器挖矿检测模型研究

引用
浏览器挖矿通过向网页内嵌入挖矿代码,使得用户访问该网站的同时,非法占用他人系统资源和网络资源开采货币,达到自己获益的挖矿攻击.通过对网页挖矿特征进行融合,选取八个特征用以恶意挖矿攻击检测,同时使用逻辑回归、支持向量机、决策树、随机森林四种算法进行模型训练,最终得到了平均识别率高达98.7%的检测模型.同时经实验得出随机森林算法模型在恶意挖矿检测中性能最高;有无Websocket连接、Web Worker的个数和Postmessage及onmessage事件总数这三个特征的组合对恶意挖矿检测具有高标识性.

比特币;挖矿攻击;网页安全;网页检测;机器学习

57

TP309(计算技术、计算机技术)

国家重点研发计划;中国人民公安大学中央基本科研业务费项目;公安部科技强警基础工作2020专项

2021-11-26(万方平台首次上网日期,不代表论文的发表时间)

共6页

125-130

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(22)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn