期刊专题

10.3778/j.issn.1002-8331.2103-0469

深度学习生物医学实体关系抽取研究综述

引用
随着生命科学技术的发展,生物医学领域文献呈指数级增长,如何从海量文献中挖掘、抽取有价值的信息成为生物医学领域新的研究契机.作为信息抽取的核心技术,命名实体识别和关系抽取成为生物医学文本挖掘的基础和关键,其主要工作为识别生物医学文本中的实体,并提取实体间存在的生物医学语义关系.当前深度学习技术在各领域自然语言处理任务中取得了长足的发展,旨在总结基于神经网络的生物医学实体识别和关系抽取的方法,从概念、进展、现状等多角度全面阐述各项技术在生物医学领域的发展历程,进一步明确生物医学文本信息抽取工作的探索方向.

生物医学;信息抽取;命名实体识别;关系抽取;深度学习

57

TP391(计算技术、计算机技术)

国家自然科学基金61976124,62072070

2021-11-15(万方平台首次上网日期,不代表论文的发表时间)

共10页

14-23

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(21)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn