期刊专题

10.3778/j.issn.1002-8331.2005-0409

基于特征融合卷积神经网络的端到端加密流量分类

引用
针对现有人工神经网络方法在网络加密流量分类应用中结构复杂且计算量大的问题,首次提出了一种基于特征融合的轻量级网络模型Inception-CNN,用于端到端加密流量的分类,在显著提高分类结果准确性的同时,大大降低了网络计算复杂度.利用Inception模块1×1卷积进行降维,减少了计算参数;从不同的感受野中做到不同级别上的特征提取,将多种不同尺寸滤波器卷积的特征进行融合,从而在原始数据中提取到更加丰富的特征自动学习原始输入和预期输出之间的非线性关系;利用池化操作没有参数的特性,防止产生过拟合.选择使用国际公开ISCX VPN-nonVPN数据集作为实验数据,采用softmax作为分类器,实现了对加密流量的准确分类.实验结果表明,该模型分类准确率达到97.3%、精确率达到97.2%、召回率达到97.7%、F1-score达到97.5%,并且对不同类别的加密流量识别效果也更加均衡.

人工神经网络;Inception;端对端;加密流量分类;特征融合

57

TP393.08(计算技术、计算机技术)

国家自然科学基金;国家科技部科技支撑项目

2021-09-26(万方平台首次上网日期,不代表论文的发表时间)

共8页

114-121

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(18)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn