期刊专题

10.3778/j.issn.1002-8331.2104-0176

生成对抗网络在医学图像处理中的应用

引用
生成对抗网络(Generative Adversarial Nets,GANs)模型可以无监督学习到更丰富的数据信息,其包括生成模型与判别模型,凭借二者之间的对抗提高性能.针对传统GANs存在着梯度消失、模式崩溃及无法生成离散数据分布等问题,已经提出了大量的变体模型.介绍了生成对抗网络模型的理论和组成结构;介绍了几种典型的变体模型,重点介绍了生成对抗网络模型在图像生成、图像分割、图像分类、目标检测及图像超分辨率重建应用领域上的研究进展及现状.在研究现状和问题基础上进行了深入分析,进一步总结和探讨了GANs模型在医学图像处理领域中未来发展的趋势和所面临的挑战.

医学图像处理;生成对抗网络;生成模型;判别模型

57

TP391(计算技术、计算机技术)

国家自然科学基金;广东省青年创新人才项目;广州市科技计划项目;广东省基础与应用基础研究基金;中央高校基本科研业务费专项;广东省特色创新类项目

2021-09-26(万方平台首次上网日期,不代表论文的发表时间)

共14页

24-37

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(18)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn