期刊专题

10.3778/j.issn.1002-8331.2102-0257

深度学习的单幅图像超分辨率重建方法综述

引用
图像超分辨率重建即使用特定算法将同一场景中的低分辨率模糊图像恢复成高分辨率图像.近年来,随着深度学习的蓬勃发展,该技术在很多领域都得到了广泛的应用,在图像超分辨率重建领域中基于深度学习的方法被研究的越来越多.为了掌握当前基于深度学习的图像超分辨率重建算法的发展状况和研究趋势,对目前图像超分辨率的流行算法进行综述.主要从现有单幅图像超分辨算法的网络模型结构、尺度放大方法和损失函数三个方面进行详细论述,分析各类方法的缺陷和益处,同时通过实验对比分析不同网络模型、不同损失函数在主流数据集上的重建效果,最后展望基于深度学习的单幅图像超分辨重建算法未来的发展方向.

图像超分辨率;深度学习;卷积神经网络;生成对抗网络

57

TP183(自动化基础理论)

国家自然科学基金;陕西省教育厅科学研究计划

2021-09-26(万方平台首次上网日期,不代表论文的发表时间)

共11页

13-23

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(18)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn