期刊专题

10.3778/j.issn.1002-8331.2005-0008

旋转目标检测算法在卫星影像中的应用

引用
近年来,深度学习在卫星影像目标检测领域得到了快速的发展,如何精准高效定位目标物体是卫星影像目标检测研究中的主要难点.提出了一种基于旋转矩形空间的YOLOv3改进算法来精准定位卫星影像目标,对原有网络进行改进,增加角度变换的数据预处理过程,防止实例角度变化对网络训练造成影响.使用双旋转坐标进行回归训练,增加了角度锚点,提高了网络对卫星目标的检测有效性.提出了基于旋转矩形空间的非极大值抑制改进算法,可以有效去除多余的旋转预测框.实验结果表明,改进YOLOv3算法相较于原始YOLOv3算法拥有更好的可视化效果,可以有效准确地定位卫星影像的目标物体,有效避免了密集场景下预测框的遮挡问题,在保证实时性的前提下,将均值平均精度提高了0.8个百分点.

卫星影像;目标检测;深度学习;旋转矩形框

57

TP75(遥感技术)

国家重点研发计划;宁波2025重点研发计划

2021-08-25(万方平台首次上网日期,不代表论文的发表时间)

共8页

134-141

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(16)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn