期刊专题

10.3778/j.issn.1002-8331.2104-0096

基于群智能算法的SVR参数优化研究进展

引用
支持向量回归机(Support Vector Regression,SVR)是建立在统计学习理论上的一种机器学习方法,主要用来处理回归问题.选取到合适的参数是实现支持向量回归机算法优势的前提,但在实践中仍然存在模型参数选择困难的问题.群智能算法主要是模仿自然界生物种群社会行为规律的元启发式算法,具有简单性、自适应性、灵活性等特点,现已成为非线性参数寻优方法的研究热点.系统综述了利用群智能算法优化支持向量回归机参数的研究进展.在介绍支持向量回归机基础理论之后,系统分析了常见群智能算法及其改进方法实现支持向量回归机参数优化选择的优点与不足,并对未来的研究方向及挑战做出展望.

支持向量回归机(SVR);参数优化;群智能算法;机器学习

57

TP181(自动化基础理论)

国家自然科学基金61966002,62041210

2021-08-25(万方平台首次上网日期,不代表论文的发表时间)

共15页

50-64

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(16)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn