期刊专题

10.3778/j.issn.1002-8331.2011-0187

采用特征引导机制的显著性检测网络

引用
近年来,基于全卷积网络的显著性物体检测方法较手工选取特征的方法已经取得了较大的进展,但针对复杂场景图像的检测仍存在一些问题需要解决.提出了一种新的基于全局特征引导的显著性物体检测模型,研究深层语义特征在多尺度多层次特征表达中的重要作用.以特征金字塔网络的编解码结构为基础,在自底而上的路径中,设计了全局特征生成模块(GGM),准确提取显著性物体的位置信息;构建了加强上下文联系的残差模块(RM),提取各侧边输出的多尺度特征;采用特征引导流(GF)融合全局特征生成模块和残差模块,利用深层语义特征去引导浅层特征提取,高亮显著目标的同时抑制背景噪声.实验结果表明,在5个基准数据集上与11种主流方法相比,该模型具有优越性.

显著性检测、全卷积网络、特征引导、多尺度和多层次特征、残差结构

57

TP391(计算技术、计算机技术)

上海市自然科学基金;上海应用技术大学中青年科技人才发展基金;国家自然科学基金

2021-07-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

201-208

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(14)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn