期刊专题

10.3778/j.issn.1002-8331.2011-0037

基于LSTM-Attention与CNN混合模型的文本分类方法

引用
针对传统长短时记忆网络(Long Short-Term Memory,LSTM)和卷积神经网络(Convolution Neural Network,CNN)在提取特征时无法体现每个词语在文本中重要程度的问题,提出一种基于LSTM-Attention与CNN混合模型的文本分类方法.使用CNN提取文本局部信息,进而整合出全文语义;用LSTM提取文本上下文特征,在LSTM之后加入注意力机制(Attention)提取输出信息的注意力分值;将LSTM-Attention的输出与CNN的输出进行融合,实现了有效提取文本特征的基础上将注意力集中在重要的词语上.在三个公开数据集上的实验结果表明,提出的模型相较于LSTM、CNN及其改进模型效果更好,可以有效提高文本分类的效果.

文本分类、长短时记忆网络(LSTM)、注意力机制、卷积神经网络(CNN)、特征融合

57

TP391(计算技术、计算机技术)

国家自然科学基金;陕西省自然科学基金

2021-07-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

126-133

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(14)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn