期刊专题

10.3778/j.issn.1002-8331.2004-0209

基于迁移学习的小样本DGA恶意域名检测方法

引用
域名生成算法(DGA)存在变化多、部分类别样本难获取的特点,使得采用传统机器学习的恶意域名检测模型准确性不高.提出一种基于迁移学习和多核CNN的小样本DGA恶意域名检测模型.该模型将目标域名映射到向量空间中,使用样本充足的DGA种类进行预训练,并迁移预训练得到的参数到小样本检测模型.采用多核CNN小样本分类模型根据发音习惯进行域名特征提取并分类.通过实验对比发现,无知识迁移的小样本分类模型只有11类域名准确率超过92%,经过迁移学习的多核CNN模型20类准确率超过92%,11类准确率超过97%,检测效果接近数据充足时的分类效果.

恶意域名、卷积神经网络、迁移学习、域名生成算法、小样本学习

57

TP393(计算技术、计算机技术)

国家自然科学基金;民航安全能力建设项目;民航安全能力建设项目;中央高校中国民航大学专项

2021-07-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

103-109

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(14)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn