期刊专题

10.3778/j.issn.1002-8331.2003-0111

融合独立组件的ResNet在细粒度车型识别中的应用

引用
针对细粒度车型中子车系间识别率低的问题,同时为了增强卷积神经网络的表征能力,提出融合独立组件的残差网络(IC-ResNet)模型.优化ResNet网络,通过改进下采样层,减少特征信息损失,接着使用中心损失函数和Softmax损失函数联合学习策略,增强模型的类内聚性.在卷积层前引入独立组件(IC)层,获得相对独立的神经元,增强网络独立性,提高模型的特征表示能力,从而对细粒度车型实现更准确的分类.仿真实验表明,该模型在Stanford cars-196数据集上的识别准确率达到94.7%,与其他模型相比,实现了最优效果,从而验证了该车型识别模型的有效性.

细粒度车型识别、残差网络、独立组件、中心损失

57

TP391(计算技术、计算机技术)

山西省-中科院科技合作重大项目;山西省科技重大项目

2021-06-15(万方平台首次上网日期,不代表论文的发表时间)

共6页

248-253

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn