期刊专题

10.3778/j.issn.1002-8331.2006-0065

基于BERT-CRF模型的中文事件检测方法研究

引用
事件抽取是自然语言处理中信息抽取的关键任务之一.事件检测是事件抽取的第一步,事件检测的目标是识别事件中的触发词并为其分类.现有的中文事件检测存在由于分词造成的误差传递,导致触发词提取不准确.将中文事件检测看作序列标注任务,提出一种基于预训练模型与条件随机场相结合的事件检测模型,采用BIO标注方法对数据进行标注,将训练数据通过预训练模型B E RT得到基于远距离的动态字向量的触发词特征,通过条件随机场CRF对触发词进行分类.在ACE2005中文数据集上的实验表明,提出的中文事件检测模型与现有模型相比,准确率、召回率与F1值都有提升.

中文事件检测、预训练模型、条件随机场(CRF)

57

TP391.1(计算技术、计算机技术)

国家重点研发计划;基本科研业务费项目

2021-06-15(万方平台首次上网日期,不代表论文的发表时间)

共5页

135-139

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn