10.3778/j.issn.1002-8331.2002-0266
DFM-GAN网络在跨年龄模拟的人脸识别技术研究
针对年龄变化对人脸识别率影响的问题,结合生成式对抗网络(Generative Adversarial Network,GAN)与深度特征迁移提出一种跨年龄人脸生成方法DFM-GAN(Depth Feature Migration GAN),并进行跨年龄模拟人脸验证实验研究.首先通过卷积编码器将真实样本映射到特征向量,然后利用反卷积生成器将向量投影到独热编码年龄条件下的人脸集合,通过在特征空间中迁移数据库样本人脸纹理风格、语义特点等属性,模拟生成待检人员在不同年龄段的面部图像,减少与数据库样本之间的差异性.同时通过高斯边缘模糊的方法对样本数据集做预处理,引入边缘提升对抗损失函数,使生成图像具有更为清晰的边缘,对生成图像进行局部颜色直方图匹配,增加对比度,达到提高跨年龄人脸识别性能的目的.进行了单样本不同年龄实验与指定年龄多样本实验,以人脸相似度与人脸距两项指标进行实验测量,结果表明:跨年龄数据样本经过DFM-GAN生成后的人脸图像,相似度平均提高了19.24个百分点,人脸距离平均减少了0.451,在跨年龄人脸识别方向具有较好的可行性和一定的实际意义.
人脸验证、生成式对抗网络(GAN)、深度特征迁移、人脸模拟、跨年龄识别
57
TP391(计算技术、计算机技术)
国家重点研发计划;国家自然科学基金重大项目
2021-05-24(万方平台首次上网日期,不代表论文的发表时间)
共8页
117-124