10.3778/j.issn.1002-8331.2008-0155
改进SSD的安全帽检测方法
施工人员佩戴安全帽是安全生产的重要一环,为保障工人生命安全,同时克服传统人工巡检费时费力的缺点,提出了一种基于Single Shot MultiBox Detector(SSD)改进的安全帽检测新方法.针对安全帽数据集内目标尺度偏小,尺度分布不均衡,对SSD模型结构进行改进,添加用以特征融合的分支网络,增强浅层特征图语义,引入该网络后SSD300的mAP-50(mean Average Precision)相应提升2.3个百分点,且SSD300实时检测速率仅降低1.3 frame/s,达到39.6 frame/s.为使SSD模型的先验框与有效感受野匹配,对SSD默认框设置方法进行改进,引入可变参数间接调节先验框大小,改进后的SSD300与SSD512的mAP分别达到74.6%与82.5%.安全帽数据集测试结果表明,改进后的SSD模型对安全帽佩戴检测具有优秀的准确性与良好的实时性,基本满足实际应用需求.
深度学习、计算机视觉、SSD、安全帽检测、特征融合、小目标
57
TP391.41;TU714(计算技术、计算机技术)
国家自然科学基金61502297
2021-04-28(万方平台首次上网日期,不代表论文的发表时间)
共6页
192-197