期刊专题

10.3778/j.issn.1002-8331.2001-0242

环状扫描的强深度森林

引用
深度森林(Deep Forest,DF),由于此模型超参数少,且参数设置没有过多的要求,训练方便,鲁棒性高,因此在处理大型数据时比神经网络算法更加具有优势.但是,传统的深度森林中,多粒度扫描忽略了边缘数据携带的隐含信息,无法充分地获得各个特征子集,进而会对以后的级联部分产生影响.而且,级联部分每次得到的新特征有限,影响了模型的表征学习能力.针对以上问题,提出一种环状强深度森林(Circular Strong Deep Forest,CSDF),其通过环状扫描过程,一定程度上得到更充分的特征子集,且强级联森林通过特征选择提高了模型的表征学习能力.经过在不同数据集上的测试,结果表明,CSDF的性能更加优越,尤其是高维数据上更为明显.

深度森林、特征子集、表征学习能力、环状扫描

57

TP391(计算技术、计算机技术)

国家自然科学基金61772198

2021-04-28(万方平台首次上网日期,不代表论文的发表时间)

共9页

160-168

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn