期刊专题

10.3778/j.issn.1002-8331.2008-0394

基于异核卷积双注意机制的立场检测研究

引用
针对当前立场检测任务中目标短语在文本中隐式出现导致分类效果差的问题,提出一种基于异核卷积双注意机制(HCDAM)的立场检测模型.采用三段式策略,为提高目标短语和文本的特征表示能力,采用Bert预训练模型获得基于字符级的包含上下文的词向量表示;为提高隐式目标短语的抽取能力,采取异核卷积注意模式获取含不同位置和语义信息的卷积特征;通过再注意力机制利用显隐式目标短语对文本进行立场信息特征抽取,通过softmax分类器进行分类.基于NLPCC语料的实验结果表明,通过采用异核卷积双注意策略,相比Bert-Condition-CNN模型,在总数据集上平均分类准确率提高了0.108,在5个话题上分类准确率分别提高了0.146、0.046、0.133、0.047、0.056.

中文微博、立场检测、注意力机制、隐式特征、深度学习

57

TP391(计算技术、计算机技术)

山西省纪检信访大数据智能情报管理系统开发基金;山西省回国留学人员科研基金

2021-04-28(万方平台首次上网日期,不代表论文的发表时间)

共7页

119-125

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn