期刊专题

10.3778/j.issn.1002-8331.2004-0062

优先状态估计的双深度Q网络

引用
深度强化学习探索问题中,需要根据环境给予的外部奖赏以作出决策,而在稀疏奖赏环境下,训练初期将获取不到任何信息,且在训练后期难以动态地结合已获得的信息对探索策略进行调整.为缓解这个问题,提出优先状态估计方法,在对状态进行访问时给予优先值,结合外部奖赏一并存入经验池中,引导探索的策略方向.结合DDQN(Double Deep Q Network)与优先经验回放,在OpenAI Gym中的MountainCar经典控制问题与Atari 2600中的FreeWay游戏中进行对比实验,结果表明该方法在稀疏奖赏环境中具有更好的学习性能,取得了更高的平均分数.

强化学习、状态估计、深度Q网络、双深度Q网络

57

TP181(自动化基础理论)

2021-04-28(万方平台首次上网日期,不代表论文的发表时间)

共6页

78-83

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn