期刊专题

10.3778/j.issn.1002-8331.2009-0356

改进YOLO轻量化网络的口罩检测算法

引用
针对目前YOLO轻量网络在口罩佩戴检测任务中出现的特征提取不足和特征利用率不高的问题,提出了一种基于改进YOLOv4-tiny的轻量化网络算法.增加Max Module结构以获取更多目标的主要特征,提高检测准确率.提出自下而上的多尺度融合,结合低层信息丰富网络的特征层次,提高特征利用率.使用CIoU作为边框回归损失函数,加快模型收敛速度.相较于原算法,在公开数据集PASCAL VOC和口罩佩戴检测任务中,mAP分别提高4.9个百分点和3.3个百分点,检测速率分别达到74 frame/s和64 frame/s,满足口罩佩戴检测任务的准确率和实时性.

口罩佩戴检测、YOLOv4-tiny、Max Module结构、多尺度融合、CIoU

57

TP391.4(计算技术、计算机技术)

2021-04-28(万方平台首次上网日期,不代表论文的发表时间)

共8页

62-69

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn