期刊专题

10.3778/j.issn.1002-8331.2012-0357

深度学习模型可解释性研究综述

引用
深度学习技术以数据驱动学习的特点,在自然语言处理、图像处理、语音识别等领域取得了巨大成就.但由于深度学习模型网络过深、参数多、复杂度高等特性,该模型做出的决策及中间过程让人类难以理解,因此探究深度学习的可解释性成为当前人工智能领域研究的新课题.以深度学习模型可解释性为研究对象,对其研究进展进行总结阐述.从自解释模型、特定模型解释、不可知模型解释、因果可解释性四个方面对主要可解释性方法进行总结分析.列举出可解释性相关技术的应用,讨论当前可解释性研究存在的问题并进行展望,以推动深度学习可解释性研究框架的进一步发展.

深度学习、可解释性、人工智能、因果可解释、自解释

57

TN912

国家自然科学基金;湖北省自然科学基金;华中师范大学中央高校基本科研业务费项目

2021-04-28(万方平台首次上网日期,不代表论文的发表时间)

共9页

1-9

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn