期刊专题

10.3778/j.issn.1002-8331.2009-0186

EMD-LSTM模型对金融时间序列的预测

引用
针对金融时间序列高噪声以及非线性的特点,提出一种基于经验模态分解(EMD)和长短期记忆(LSTM)网络的金融时间序列预测模型.为避免对整体序列只进行一次经验模态分解后的模型训练过程中使用测试集的信息,将时间序列数据通过一定大小的时间窗口进行多步经验模态分解,并对分解后的序列去噪重构,再将重构后的序列作为LSTM网络的输入,得到最终的预测结果.利用上证综指数据,将其与标准LSTM模型以及常见的结合EMD的预测方法进行对比,结果表明提出的EMD-LSTM模型具有更好的预测效果.

金融时间序列、经验模态分解、长短期记忆网络、时间窗口

57

TP183(自动化基础理论)

2021-03-11(万方平台首次上网日期,不代表论文的发表时间)

共6页

239-244

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

57

2021,57(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn