期刊专题

10.3778/j.issn.1002-8331.1911-0012

针对弱边缘信息的左心室图像分割算法

引用
基于距离正则水平集模型(DRLSE)的左心室MR图像分割算法对梯度信息有很强的依赖性,在图像弱边缘区域容易陷入局部最优,且对初始轮廓的选取敏感.为降低算法对初始轮廓的敏感程度,提高其在左心室图像弱边缘的分割能力,提出一种适用于弱边缘信息的左心室分割算法.在DRLSE的基础上,该分割算法提出运用拟合方法计算基于变异系数分割模型(PSM)的新局部项,算法依靠梯度与图像局部信息驱动曲线演化,降低了DRLSE对初始轮廓的敏感度;引入形状约束力,克服DRLSE算法在左心室外膜弱边界处出现边界泄露的情况.为验证所提算法分割的准确性,基于多伦多市患病儿童医院影像科提供的数据库,利用DRLSE、保持凸性水平集模型(CPLSE)模型、U-Net网络以及提出的内膜算法对心内膜进行分割;利用DRLSE、引入外膜形状约束力的DRLSE模型(DRLSE-shape)、U-Net网络以及提出的外膜算法对心外膜进行分割.实验结果表明,针对左心室内、外膜,所提算法优于上述算法,能降低DRLSE对初始轮廓的敏感程度,提升对左心室弱边界MR图像分割的精确度.

左心室、图像分割、水平集、弱边界

56

TP391.41(计算技术、计算机技术)

国家自然科学基金No.61762019.No.61462001

2020-12-04(万方平台首次上网日期,不代表论文的发表时间)

共9页

211-219

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(23)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn