期刊专题

10.3778/j.issn.1002-8331.2003-0261

批量减数更新方差缩减梯度下降算法BSUG

引用
机器学习问题通常会转换成求解一个目标函数问题.继随机梯度下降(Stochastic Gradient Descent,SGD)之后,随机方差缩减梯度法(Stochastic Variance Reduction Gradient,SVRG)成为如今优化目标函数参数的主流算法,它由于不受方差影响达到线性收敛而被人们广泛研究.它的提出导致陆续出现如SAGA(Stochastic Average Gradient Average)和SCSG(Stochastically Controlled Stochastic Gradient)等新型方差缩减算法,它们有着过量消耗内存、迭代缓慢等问题.为了实现小成本存储以及快速迭代的目的,设计了一种以SVRG为基础的新型变异方差缩减算法BSUG(Batch Subtraction Update Gradient).改进在于:使用小批量样本代替全部样本进行平均梯度计算,同时对平均梯度进行减数更新.每轮迭代中,随机抽取一批小样本进行平均梯度计算,同时在内部迭代时通过对过去模型梯度的舍去来达到更新平均梯度的目的.通过合适地降低批大小B,可以减少内存存储以及迭代次数.理论分析算法的收敛性,并基于Python进行算法实现,通过与Mini-Batch SGD、AdaGrad、RMSProp、SVRG和SCSG等算法进行比较证明了BSUG算法的有效性,并且通过对超参数进行探究证明了算法的稳定性.

机器学习、优化、小批量、减数更新、随机方差缩减梯度法(SVRG)

56

TP301.6(计算技术、计算机技术)

国家自然科学基金No.61974001

2020-11-20(万方平台首次上网日期,不代表论文的发表时间)

共7页

117-123

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(22)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn