期刊专题

10.3778/j.issn.1002-8331.1910-0087

YOLO算法在安检异常图像中的研究

引用
在人口密集场所中,安检是保证公共安全的重要手段.针对人工安检在遇到客流高峰或突发情况时,安检的效率和准确率易受到影响且存在安全隐患的问题,基于YOLO算法,提出了一种改进的Dense-YOLO目标检测算法.通过借鉴稠密网络中特征融合方式改进网络结构;采用改进的K-means算法对自制异常图像数据集进行目标框维度聚类;将卷积层中的卷积和批量归一化进行整合,提升计算效率;采用多尺度训练方式,增强模型对不同尺寸的鲁棒性.实验结果表明,利用改进后的Dense-YOLO算法提升了对小目标的检测,针对安检中可疑物进行检测,mAP达到了91.68%,检测速度提高到59 f/s.改进后的算法有效提升了安检的效率和准确率,一定程度上消除安全隐患.

可疑物检测、YOLO算法、Dense-YOLO算法、K-means算法、多尺度训练

56

TP391(计算技术、计算机技术)

国家重点研发计划No.2018YFC0824403

2020-11-12(万方平台首次上网日期,不代表论文的发表时间)

共7页

187-193

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(21)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn