期刊专题

10.3778/j.issn.1002-8331.1907-0019

基于ResNet-BLSTM的端到端语音识别

引用
基于深度学习的端到端语音识别模型中,由于模型的输入采用固定长度的语音帧,造成时域信息和部分高频信息损失进而导致识别率不高、鲁棒性差等问题.针对上述问题,提出了一种基于残差网络与双向长短时记忆网络相结合的模型,该模型采用语谱图作为输入,同时在残差网络中设计并行卷积层,提取不同尺度的特征,然后进行特征融合,最后采用连接时序分类方法进行分类,实现一个端到端的语音识别模型.实验结果表明,该模型在Aishell-1语音集上字错误率相较于传统端到端模型的WER下降2.52%,且鲁棒性较好.

残差网络(ResNet)、双向长短时记忆网络(BLSTM)、并行卷积层、连接时序分类

56

TP391(计算技术、计算机技术)

重庆市科委项目No.cstc2017zdcy-zdzxX0011

2020-09-17(万方平台首次上网日期,不代表论文的发表时间)

共7页

124-130

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(18)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn