期刊专题

10.3778/j.issn.1002-8331.1907-0044

深度强化学习在室内无人机目标搜索中的应用

引用
针对室内无人机随机目标搜索效率不高、准确率低等问题,提出了一种基于空间位置标注的好奇心驱动的深度强化学习方法.用正六边形对探索空间进行区域划分,并标记无人机在各区域的访问次数,将其作为好奇心,产生内部奖励,以鼓励无人机不断探索新领域,有效避免其陷入到局部区域;训练时采用近端策略优化算法(PPO)优化神经网络参数,该算法能使无人机更快找到最优搜索策略,较好躲避障碍物,有效缩短训练周期,提升搜索效率和准确率.

深度强化学习、室内搜索、好奇心

56

TP181(自动化基础理论)

2020-09-08(万方平台首次上网日期,不代表论文的发表时间)

共5页

156-160

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(17)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn