期刊专题

10.3778/j.issn.1002-8331.1912-0018

对抗样本训练图分类器进行模型推理质量评估

引用
重叠社区发现是社交网络分析与挖掘中的一个重要研究问题,现有的大部分方法都要求采用人工方法预先设定社区个数K,这样做存在很多问题.将无限潜特征模型推广应用到关系型数据,以非参数贝叶斯层次模型为框架建立带重叠社区结构的网络生成模型,就可以避免预先设定K的值.然而,关系型无限潜特征模型的后验参数推理结果是一个N×K列的0、1矩阵上的概率分布,如何对这种多变量结构参数进行后验推理结果总结和后验推理质量评估是一个挑战,因此提出了一种利用基于对抗样本训练图卷积神经网络的图分类器来帮助总结推理结果和估计推理质量的方法.

重叠社区发现、非参数贝叶斯模型、关系型无限潜特征模型、参数推理质量估计、图卷积神经网络

56

TP311(计算技术、计算机技术)

国家自然科学基金;北方民族大学校级科研项目;宁夏高等学校一流学科建设电子科学与技术学科;"计算机应用技术"宁夏自治区重点学科项目;宁夏自然科学基金

2020-09-08(万方平台首次上网日期,不代表论文的发表时间)

共8页

142-149

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(17)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn