期刊专题

10.3778/j.issn.1002-8331.1906-0272

改进量子搜索算法及其在核属性求解上的应用

引用
大部分的量子算法都必须先求解目标分量占比,否则算法的迭代次数无法确定.迭代次数自适应Grover算法有效地避开了目标分量占比求解这个步骤,但其性能相对于Grover算法来说并没有任何改善.致力于提升迭代次数自适应Grover算法的性能,提出了一种改进量子搜索算法,并将其应用于求解粗糙集的核属性.经过仿真实验,改进算法不仅实现了迭代次数自适应,而且整体上提升了获得目标分量的概率,使得获得目标分量的概率恒高于85%.

量子搜索、自适应、粗糙集、核属性、算法设计

56

TP387(计算技术、计算机技术)

国家自然科学基金No.61070139.No.81460769.No.61762045

2020-07-23(万方平台首次上网日期,不代表论文的发表时间)

共5页

57-61

暂无封面信息
查看本期封面目录

计算机工程与应用

1002-8331

11-2127/TP

56

2020,56(14)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn